' DOCUMENT RESUME

ED 076 391 ' SE 015 900
/

AUTHOR Milner, Stuart
TITLE The Effects of Computer Programming on Performance
Mathematics.
PUB DATE Feb 73
NOTE 41p.; Paper presented at the annual meeting of the
: American Educational Research-Association, New
Orleans, Louisiana, FebriWary 1973

EDRS PRICE MF-$0.65 HC-$3.29)
DESCRIPTORS *Computer Oriented Programs; Computer Programs;

*Elementary School Mathematics; Grade 5;

*Instruction; Mathematiﬁs'EduCatiQn; Problem-Solving;

*Research “
ABSTRACT .

The purpose was to investigate the effects of
computer programming on performance in mathematics. The LOGO
programming languiage was taught to 18 fifth,graders. A
pretest-posttest design was employed to determine whether the
mathematical concept of variable could be learned through computer
programming; a non-computer group of 20 fifth graders was used as a
control group. Results indicated that the notion of wvariable could be
learned through computer vrogramming. In addition, three ‘
instructional methods for teaching programming were studied. The
methods--algorithm-given, incomplete-complete program, no information
given--were .considered in terms of performance in writing programs.
Findings showed that although instructional method may faci.itate the
learning of programming, there were no significant differences in the
~criterion situation. Results also showed that there was no effect due
to ability (Stanford Achievement Test scores) in the criterion
situation. Observation results indicated that the students developed
certain -problem-solving behaviors and that programming is an
effective learning resource in terms. of affective considerations.
{Author/DT)

v S 0N QAN

Aruitoxt provided by Eic:

S E 0/5 900

ED 076391

PR

‘ o PILM?D FROM BEST AVAILABLE COPY_j

e
“ v

- >

U.S. DEPARTMENT OF HEALTH,
FEDUCATION & WELFARE
OFFICE OF EDUCATION
‘ THIS DOCUMENT HAS BEEN REPRO
] DUCED EXACTLY AS RECEIVED FROM
i THE PERSON OR ORGANIZATION ORIG
] INATING IToPOINTS OF VIEW OR OPIN
f .) IONS STATED DO NOT NECESSARILY /
; REPRESENT OFFICIAL OFFICE OF EDU /' '
} CATION POSITION OR POLICY "

THE EFFECTS OF COMPUTER PROGRAMMING

~ ON PERFORMANCE IN MATHEMATICS

N\,

-
2

- " Stuart Milner
- ~University of Pittsburgh

]

The research reported herein was supported by the National Science .,
Fouhdation and by the Learning Research and Development Center, supported
in part as a research and development center by funds from the National
Institute of Education. The opinions eéxpressed in this publication do
not necessarily reflect the position dr policy of the sponsoring agencies
and no official endorsement should be inferred,

THE EFFECTS OF COMPUTER PROGRAMMING
- ON PERFORMANCE IN MATHEMATICS 1

e g) Stuart Milner

University of Pittsburgh
‘Compuper programming involves tﬂe devglbpment of aigorithms, or
unambiguous sequences of.operations, for problem solution, In the pro-
gess, there are a series of steps which include analyzing the problem,
de&ising anq implementing a program;using the ;lgorithm f&r solving the
problem, testing the validity of the program, and; if necessary, finding
errors in or debugging that progra.m° In effect, by specifying a program
for problem soluhion, the ;tudent is the teacher,and'the computer is the
student.

As such, programming provides a natural context for the acquisition
of basic problem-solving skills. Furthermor;, as Feurzéig, Papert, et
al. (1969) state, programming provides an excellent context for learning
key -concepts in ma;ﬁematics sﬁch as variable and function since they can
be dealt with in concrete situations. Other support for computef pro-
gramming in the learning of matheﬁatics is given by D&yer (1971), Hatfiefd
and Kieren (1972;, and the K-13 Arithmetic-Algebra Committee (i971)f In
the study reported'here, prograqming wasvfaught to fifth grade students
to determine its effects on performance in mathematics.

The use of programming as a way of teach}ng mathematics has been

advocated by Feurzeig, Papert, et al. (1969). They state that certain aspects.

4

[)
. 1Paper presented at the Annual Meeting of the American Educational Research
Acsociation, New Orleans, Louisiana, February, 1973.

ERIC

Aruitoxt provided by Eic:

14

-

Y

of computer programming such as recursion, subroutine, etc¢. can provide °
< i
a framework for the learning of mathématics. The precision ‘involved in

programming can facilitate the learning of important activities includ-

»

e

.

-

ing articulation of mathematical processes, .rigorous thinking, and

4
.
,

problem golving.

,

A programming languz»e, LOGO, (Feugzeig, Papert, et.al,, 1969),

was designed specifically to teach mathematics through prbgfamming‘and

o

to: 1) be accessible by young children not familiar with elements of

mathematical thinking; 2) facilitate the definition of procedures; and

.

3) make concepts in mathematics expressible in-a natural fashion.

I3

Development of currdcula to teach mathematics by programming has

14

o occurred in the areas QT algebra (Feurzeig, Papert, et als, 1969),

'

number theory and logic (Feurzeig, Lukas, ét al., 1971) and problem

-solving (Feurzeig anq/Lukés, 1971). Typicafly, complex programs are
1‘ P
written by first writing simple programs, and then generalizing them

into more complex ones.

Papert (1971a, 1971b, 1971c) has initiated a project to develop

!

| . .
new methods and m§terlals for using computers and computer-controlled

Cou
devices by elemeﬁtary school students. He is in favor of letting child-

/

i

ren "do mathematics rather than merely to learn about it." 1In doing
/ .

’ M e
so, students'coﬁld conceivably learn rigorous thinking habits and

!
[
develop heuristfic concepts in problem solving. Examples of projects

/

for this are given by Papert and Solomon (1571)°
/

+
i

?
!] _2_

’
t

!
IA

ERIC

Aruitoxt provided by Eic:

{

oot

»

I4
-

The previous research in this area is very encouraglng

It tells

programming,

from the literature

us that: 1) programmlng can' provide & framework for learnlng about mathe-

3 3

matics; and 2) elementary mathematics students are capable of learnlng

’ Iy
g

aspects of mathematical thinking s¢ch as the use of heuristics in pro- -

4 »

r) -
blem solving and the expression of pfocedures algorithmically.. However,

it does not tell us a greét deal about how to teach programming., This

is important since a student needs td learn the techniques of programming

before he can use it as a way of learning about mathematics.
. 1

‘

we need to further substantiate the effectiveness of computer programming
»* '

in learning mathematics, - ’

v

The present study-was designed, "in part, to investigate how to teach
Are there ¢ertain instructional methods that farilitate the

learning of programming? Whatever the case may be, if we are to consider

the éeneralizability of teaching programming, it is ﬁnportanﬁ to make the

»

method or methods of instituction explicit and replicable, In doing so,

&

it is also necessary to demonstrate the work done by ‘the students them-

selves as a function of that instruction. It is difficult to determine

’

of some preéramming proje¢ts, (e,g. Papert, 1971c;

In addition,

I

et

Feurzeig, Lukas,
be done by students

This study was

al., 1971), how much work was actuelly done or could
on an independent basis, ;

.. [.
also designed to investrgate how computer programming

!
Specifically, it deals with the
/

question of whether or not the mathematical5concept'of variable could be
~

can enhance the learning of mathematics. °

»

learned through programming. Other aspects of mathematics such as the

" . i
acquisition of general problem-solving skills are also studied, -

-3 -

»

o

ERI

Aruitoxt provided by Eic:

Method

Design
In this study I8 £ifth grade students were taught programming. They
were selected on a random basis from the population of fifth grade students

at the Oakleaf School, an elementary school in suburban Pittsburgh. These

hed

students had no prior experience in computer prograﬁming;
The study included three phases of programming activity. The time
allotment for programming in each phase was approximaely five weeks--itwo

40- minute sessions per week. The five weeks or ten session period for

<
-

each_phase was a maximum since sogghitudents were able to complete the
work.in a given phase in less time due to the individualized nature of the
study.

Phase I dealt with training in the use of the LOGO language. All
students were given-this training, which consisted of computer-assisted

lessons. The lessons, éome of which were developed at Bolt, Beranek and

Newman, Cambridge, Mass.,2 dealt with LOGO commands such as those for

-

. <
defining, executing, and terminating procedures, specification of inputs

and outputs, ?nd ar@thmetic operations. The format of a lesson consisted
of a brief tutorial followed by a period of iqdependent work in which

the student had complete confrol over the computer in terms of amount

and nature of practice. Once the student decided that he had completed
theipractice, he could access a new lesson. It was assu@ed that a mini- 1
mal knowledge of elements of the L0GO languagéxexisted.once the lessons

were completed.

2The author wishes to express his gratitude to Wallace Feurzeig and George
" Lukas for providing lessons which served as a basis for the lessons -
developed for this study.

-4 -

ey

ERIC

Aruitoxt provided by Eic:

g

The rationale for teaching elements of the language independent of

instructional mgthod in learning Fo program was' to avoid confounding

learning element$ of the LOGO 1an£uage with the writing of algorithms.,
In order to investigafe the effects of method of Eeaching computer

programming (Phase II), the students were first grouped into two levels

of ability--high and low--on the basis of their previous year's scores

- -

on the concept, applicatiqns, and compgtgiion scales of the Stanford
Achievement Test. Specifically, the students' scores were ranked, and
those above the median constituted the high ability group, whereas those
below were placed in the low ability group.

" They were then randomly’assigned to one of three instructional methods.
Examples of the tasks, which were the same for the three methods, and the

respective methods are given in Appendix A. One method consisted of an

algorithm given in natural language form to be programmed in the LOGO

language by the students. The algorithm was based on a task which was also

given to the student. In the second method, students were given an in-

complete computer program written in the LOGO language. It was necessary

~

for the students to complete the program, which was also based on a task

given, and implement it on the computer. In the third instructional method,

students were given no information other than the task definition. The

PP

ERIC

Aruitoxt provided by Eic:

.

purpose of investigation of the inst;uctionai method variable was to
determine if method oﬁﬂteaching facilitates programming in the critérion
phase (Phase III): .

The .programs in Phase II involved tasks.that required using vari-
ables and the generation of arithmetic and geometric sequences. The
maximum number of tasks a student could do in this phase was 4. These
tasks Qere related to the prograﬁming problems in Phase III.

Presentation of the programming pfoblem,!then, depended on which
method a student was assiénéd. Thus, for'a given problem, one sturdent
was given an algorithm, a second an incomplete LOGO program, and a
third was given no iﬁformation o;her than the task definition.

At the onset of Phase II, students were given a;manual, which
desc;ibed elements of the LOGO language, how to interact with the tele-
type, and a sample program written in LOGO for generatiné a simple
arithmetic sequence.

Students were given no explicit infoymation in Phase II other than
task definitions and instructional method. Occasionally, students
reached an impasse and needed, in the researcher's épinion, some type
of help. In accordance with\somg of the principles édvocated by George
Poly; (1957), they were encouraged to look back at every step of the
problem, reflect, think about a related problem, and keep trying.

In Pﬂgse III, all students were given tasks similar to the ones in

the previous phase except that no explicit information was given to them

other than task definitions. The kind of assistance described above

given in Phase II also applied here. So that there would be no upper

limit on the number of programs that could possibly be written during

) : the 10 session period, more problems-were generated than students wero

able to solve. One student wrote 10 programs. S

~17 N
The tasks in Phase III were, in a sense, criterion measures of the

]
students' ability to write procedures involving variables and sequences

-

given‘the }espectiﬁe instructional method. An‘ahalygis was performed
to determine the effectshof instructional method in this phase.with the
dependent variable being number of programs free of errors and the

. independent variables being methods and ability,

In order to investigate the hypothesis that the concept of variable
could be 1earhed through programming, a pretest-posttest design was used.
The students in LOGO Qere one group (N=18), and the femaining s;ude;ts'
in the fifth grade (N=291—-the non-computer groupe-werezanothbr.‘

The development of the test on understanding variables began with

. o
the definition of variable by this investigator and several mathematics
educators. Behavioral objectives were formed ‘based on the definition and
translafed'into test items., After a pilot‘administration, an item ana-
lysis was performed and all negatively discriminating items were dis-
carded. 1In addition, items Wwith fuulty wording were revised, Reliabil-,
ity of the test was’computed-using the pretest and posttest—correlation

for the non-computer group, and was found to be .77. Examples of test

items are in Appendix B. .

Aruitoxt provided by Eic:

s it g o i i e o .

ERIC

Aruitoxt provided by Eic:

s e e e -

- - -

Implementation

Programming was done on an interactive basis using a,DECsystem-10

_ time-sharing system. Students worked, typically, in groups of four,

> o
and each student had access to a standard teletype device--KSR-33.

« The students were taught how to use the editor and file manipula-
tion commands éf LOGO on the DEC-10. It migh% be added tha£ they
became quite skillful at using these. .
Each student had a folder, in which the manual and previous s-ork
were kept. These folders were retéieved by the students prior to each .
session, and the material ip them was used when necessary.
The following two sections deal with the results of the study. 1In

the next section, statistical results dealing with instructional method
N

and ability; and concept acquisition are presented and analyzed.

Additional results igcluding observations on student performance and

general comments regarding the study are given in the observational

results section. . ®
Statistical Results | .

Instructional Metho&

>

Results of performance in Phase II for fhe 18 students are
presented in Table 1. Mean number of error-free programs for the high
and low ability groups were 3.33 and 2.33 respectively. Mean scores ¢
on instructional method were 2.833, 3.5, and 2.167 for the algorithm- .

given, incomplete-program, and no-information groups respectively.

o

- 8 -

In Phase III, a randoﬁized block design based on the same grouping ———

< .
by method and ability as in Phase II was used. The number of observa-

kY
tions per cell was three.

5‘Resu1ts of Phase III performance are presented in Table 2. The

hypothesis of eqhal abilities with F =1.73 and p <.213 was not rejected.
(1.12) ’
Mean number of programs written for the high and low ability groups -

were 3.89 and 2,22 respectively (see Table 3). Although there were a
greater mean number of programs.written by the high ability group in"

both phases, there was no significant difference due to ability in the

»

. . . . Y
criterion situation. ¢

----------------------- TP -

Insert Table 2 abdut here

In'addition, there wa; no signif%c;nt instructional method effect
in Phase III. The F-ratis with 2 and 2 degrees of freedom was 2.65,
and the brobability with which the null hypothesis can be rejected was
. o <
less than ,274. Mean number ofﬁbrograms written for the three groups-
were 1.67, 4.67, and 2.83. Interestingly, the no-information group
had a higher mean score than the aléérithm-given group even though the

s

reverse- was the case in Phase II.

A e G o oy et . - = e b b wn -

>

The results indicate no significant effect due to method of in-
struction in programming{jn the criterion phase. The data seem to

indicate that althou instructional method may be relevant in learning

I

. -9 -

F(°
to write computer programs (Phase II), it does not seem to be relevant
&

in terms of its transfer value gn the criterion phase (Phase III).
Although the cell sizes are small in the ANOVA, and the possibiiity
of error in inference exists, the statistical findings arc consistent

with the feelings of this invest}gator having directly observed the

students. Thereforejy the findings that instructional treatment and

ability are insignificant in the criterion situation are supported

’ statistically and observationally élthough replication is necessaky.
Ve
Thére was ™ sjignificant interaction effect in Phasc IiI, F =715,
L " (2,12)
p<:.509. . .
Concept'Aquisition ’ ’
it was hypothesize& that tlrough computer programming the mathehaticalt
,féoncept of variable would be learned. 1In ordcr‘to invest;gate this, a
' @ -
pretes -posttdst design was emplo;ed. Analysis of covariance was the(
) statistical techniqué useé with the pretesb as the covariate and the posé-
N . . N
test as the ependent 'yariable. o ’
'
A test for homog;neity of £égression’Was per formed in order to detexr-
mine whe;ier or not the within-grdup regression cocfficients were equiva-
. " ¢
' 1éﬁf; and Ehgzwﬁo”s§séé;;£{c75ifféreéée; betweer the groups existed.
The resulting F =,061, p;>.05 indicated that the regression co- .
: (1,34)

efficients were esseni:ially hamogenecus.

The.analysis of covariance data is summarized in Table 4. The

hypothesis that no differences exist between the two groups with respect

- 10 - n .]

&

" computer groups were 49.10 and 36.10 respectively.

to the acquisition of EhE concept of variable was rejected, F(x 5y = 7.433 °
\ b
-3

P<.01l. Means - and standard deviations on the concept test for
the computer and non-computer groups are given ir Table 5. The mean *

pretest scores for'the computer ;and non-computer groups were 33,342 and '}

33.859 respectively, and mean posttest scores for the computer and non-
t

v

T et e v o e > G s s > - - =y - - - - -

Q

<

In addition to and more convincing than the test results, the

studebtﬁ demonstrated their xnowledge of variables.by’ﬁfrtue of the -

o~ =)

programs written by -them, "Consider Eﬁg,£0110w1ng procedure to count by
any number between any two nufibers: -

- o «
TO LIHY /L/ /®/ /1/ (procedure name and inputs)
19 TEST GREATERP OF /L/ AND /1/ (test)
2 IF TRUE STOP (if stopping number exceeded,

procedure ends)

3% PRINT /L/ . . (otherwise, print number)
49 MAKE "1L" SUM OF /L/ AND /P/° (increment number by P)
59 LIHY /1/ /®/ /17 “ .« (do procedure again)
END

”) |

The above program, written by a student, uses three variables, The
Procedure name is LIHY. The variable L stands for the starting number,
P stands for the increménting‘number, and I stands for the stopping
number,, . —

Discussion
As a whole, the students in thé algorithm-giveh group seemed to

- 11 - 1 |

s
H

ER]

Aruitoxt provided by Eic:

.
ot o e
i

ignore the algorithms in spite of the researcher's suggestions. to pay

attention to them. Moreover, there was not much variation in response
. L] I Y .
Xy

pos51b1e~1f a student did follow the. algorlthm closely given the mature -
of an algorlthm It is suggested that this treatment may be used as a

possible resource in teaching*prdgramming but not as a primary method in

doing so., -

»

A greater mean of number of programs were written by students in

A ——

the incomplete-program group vis-a-vis the other ones. This particular

treétment seemed to most facilitate solving the Phase II and Phase III

- problems aLthough it cannot be cons1dered slgnlflcantly different from

~

the others in the criterion s1tuat10n.
" h.."""--v—-‘...
Even though one student in the no-information group did well in
Phase II, the remaining students did have problems with the third and

fourth tasks, which'required‘terminating a procedure after a finite

number of iterations. Tt is felt that some type of information would

£l

~—have facilitated problem solutiorn in Phase II. FEurther studies are

— s N - - \
needed to assess ‘the worth of this "discovery" approach.

It is evident from the data that the concept of variable was learned

through computer programming. The significant difference on the posttest

between the two groups using the -analysis of co¥ariance design suggests

that computer programming is an effective instructional tool in learn-
ing the concept of variable, .

<

Moreover, it is 1mportant to cons1der the use of variables in the

programs written by the students in assessing their knowledge of the

N concept. Not only did the students demonstrate competency at using

- .

) - 12 -

variables, but the major programming problems did not iavolve inability

to use variabled. In fact, many students were able to verbalize the
. . meaning of variables when*explicating their respective programs, Sev-
eral students even used numerals as variable names to stand fér numbers
and were able to explain théir meaning. Consider the following program

written using numerals as‘variable names and designed to count by any
- i N

number using two variables:
; . R

TO COUNT-WITH-INPUTS /1/. /34/
19 PRINT /1/ -

20) MAKE 1 SUM OF /1/ and /34/
39 COUNT-WITH-INPUTS /1/ /34/
END :

(two inputs)

(print first number)
(increment)

(do procedure again)

In the above program, numeral 1 stands for starting number, and
numeral 34 stands for incrementing number,
It should be mentioned that the non-computer group received no

training in the concept of variable, It may be argued that the signifi-

-

cant difference between the two groups was obvious since the computer

group reteiveddﬁﬁe training. However, the purpose was to establish the

fact that the concept could be taught through computer programming, It
is beyond the scope of?the present study to invéstigate the relative
effectiveness of teaching a concept by means of computer programming
vis-a-vis some other ﬁethod or methods, '

~—

Observational Results

Phase I

The students proceeded rapidly through the lessons in Phase I with

- 13 --

-

e
4

;
b

no major difficulties, It was expected that by learning elements of

the LOGO language independent of learning to write computer programs

(Phase II), any possible confounding of the two would be eliminated,
. -) .
This separation seemed valuable, Students working on Phase .II tasks

occasionally had difficulty with programming logic but appeared to know

what LOGO commands cduld be used. For instance, some students had

-

‘igifficulty placing the IF TRUE and IF FALSE commands in a procedure

aléﬁbugh they knew how and why to use the commands.

Another purpose of the Phase I lessons was to get students "over
the hump," (Dwyer, 1972) iéto‘computing. The 1eésons were to serve as
an aid in learning the LOGO language. Unfortunatel&, some students
became dependent on them. DuringePhasé*II and III, some students
occasionally expressed a desire to work new lessons of tﬁe type seen in
Phase I. It ghould also be‘mentioned that some students did not spend
much time in the independent pfactice part of the lessons. A lesson
consisted of a short tptorial followed by a.period of practice, in which

>

the student had control over the amount and type of practice.

For most of the students, the Loéo ﬁroject was their first exten- -
sive experience with the computer. Given this, the Phasé I lessons
were beneficial in several respeéts. For one, they provided a means of ~ v
interaction that was brief, concise, tutorial, and controllable by the
learner. Major problems and frustrations were relatively non-existent.,

In addition, the lessons were useful in enhancing typing skills, It

might beﬁédded that most of the students developed their typing ability

- 14 -

ERI

i e
2,

U
considerably. Moreover, the students gradually became more careful and
precise when interacting with the lessons and scemed to reflect more as
they proceeded.

Throughout Phase I, ma&y students had difficulty with thg concept
of inputting numbers to a program. ‘An input to a computer program is

o

a value provided at program execution time for which a previously de-~
fined variable name usually exists. Later difficulties by the students

with inputs--primarily in Phase III-~led me -to believe that inputs

could have been emphasized more in this phase. .

Finaily, an altermative approach to teaching the 1OGO léhgdage

could have consisted of having students write programs from the start

5

and learn elements of the language as programs were written. It is

questionable whether or nPt this would have been more effective in terms
oftthe enhéﬁceﬁeﬁt of perfsrmance in Phase II and III. However, an
argument in favor of the method used is that students demonstrated com=-
petence at-defining and ;xecuting procedures-~although there were some
problems Witﬁ inputs~--and that major difficulties were not due/to a

lack of knowledge regarding elements of the LOGO language. Moreover,

when there are more than four students working concurrently on the com-

puter, a potential‘management problem can exist. If that problem

‘exists--and this researcher has. experienced it with a computer club

recently--the self-contained lessons may prove helpful to both the

learner and the teacher.

General Comments

‘One of the most exciting-aspects of this study was the apparent

- 15 -

.y

ERIC

Ao rowses oy cnc [
:

PP

)
l

motivation and enthusiasm that continued throughout the four month

i

period. The students' eagerness to work, strong interest, and per-

severance prevailed in spite of occasional frustration and inability to-
. . IS .
solve iparticular problems. The same enthusiasm and: interest continued

hY
six weeks after the study in a computer club, which also conzisted of

/
members who jwere not in the study. Students engaged in teaching other

+

students LOGO, developing a baseball game written in LOGO, and defining

their own tasks among other projects. That strong interest could pre-

vail from November to June indicates the value of programming at least
in terms of affective considerations.

The structure present in thiertudy was particularly ekxpeditious.. -
As tasks were completed, the students looked forgard to ensuing ones

and demonstrated considerable self-initiative—to write programs. In a

£

- subsequent experiment with the computer club it was felt that students

‘benefited less from an unstructured situation. Of course, the groups

in the club‘were considerably larger. Nevertheless, students when asked

B

what they would like to do even after suggestions were given would seem

-

to lack direction and initiative to write programs. It remains to be

_seen how a structured approach compares with an unstructured one.

(S

The development of certain problem-solving behaviors were evident
thrdughout the study. The planning and debugging of programs, willing-

ness to eiperiment and investigate, and testing of hypotheses were

- - v T —————
observable regularly. Also, it was not uncommon for a student to claim,

»

- 16 -

" 1IGRAND-FUNK -4 7

1
\

Iy

"I've got it now" or to explicate his thoughts about a problem.

Usually, after completing agprocedure, students would try their
programs with different values. Occasionally, they observed unexpected
results. Mary Ann P. wrote a decreasing arithmetic sequence, which had ‘
as variables the starting .and decrementing values. She wondered what
would happen if the starting value was negative. . The procedure; which
was named after a contemporary rock group, GRAND-FUNK, and the inter-
actions are listed below:

(program to count by subtracting. by any number)

TO GRAND-FUNK /BEGIN/ /NUMBER/- (two inputs) i . o
1§ PRINT /BEGIN/ ° (print numbet)

200 MAKE "“BEGIN" DIFFERENCE OF /BEGIN/ AND /NUMBER/ . (subtract) ’
30 GRAND-FUNK /BEGIN/ /NUMBER/ , (do procedure. over)

END . 1?'<" 3]

(BEGIN stands for starting number)
(NUMBER stands for decrementing number)

?
(procedure execution)

-4
-11
-18
-25

She was quite surprised at the result and then questioned what would

'happen if she used a negative number as the decrementing value. This

interaction was as follows:

P AL

!GRAND-FUNK 5 -1
5 .

6
7
8

Mary Ann was not only surprised, but jubilant. Proudly-she demonstrated

her "discovery'" to everyone around.
~ When Ruth Ann S. observed a number gererated in her geometric
sequence that was four lines in length on the teletype, she claimed it

was a "ooogleplex." She told me that she had heard of a googleplex--
t

o4

\ 100 . .

f 1010 --from her teacher, but that now she was observing one. It
might be added that students were fascinated with the large numbers

f ‘ often generated by their programs. Herein lies a value in using the

computer when introducing large numbers.

Frequently, students worked on problems which apparently served
the purpose of augmenting the solution to another problem. Polya (1957)
defines these problems as auxiliary problems. Rich H. used auxiliary
proglems in attémpting to write a procedure that would increment by four
starting at any number. ‘First, he wrote a procedure that would count
by one. He then wrote procedures to count by two and three. Through
these successive approximations, he was then able to write the procedure

: to count by four.

It was interesting to note that in several cases students used a
more general computer program to generate a sequence. For instance,
Mike H. wrote a Byocedure that wohld decrement by any number when all
that was needed was one that would decrease by 1. Polya terms this use
of a more general case to solve an easier case "inventor's paradox."

e

Some of the students offered support for their peers on occasion.

For instance, Danny noticed that Debbie was dismayed over arn unsuccess-

ful attempt to correctly execute a program. He said, 'Debbie, you test,

.

- 18 -

Aruitoxt provided by Eic:

et ey A ot o e e - e et i 2 e

ERIC

Aruitoxt provided by Eic:

I O

test, test until you get it right!"

Although many of the students nceded some encouragement and
assistance when they were unable to solve a. problem, it was obvious by
Phase III that their work was largely independent. By this it is meant

that they required little assistance and worked almost éntirely on

~their own.

<

Frequently, students demonstrated pride in their work. Not only

would they proudly show .their work to their classmates, but to students

/

/
in other grades and passers-by as well. One student typified his

"mastery" over the computer by calling it his "slave" while the terminal

-
™

was spewing output.?®) .

The students seemed to particularly enjox”watching tlie terminal
spew output. A number of their problems dealt with the generation of
infinite sequences, and they would let ‘their respectiﬁe grograms output
for long periods of time--sometimes comparing the length of their out-
puts--before interrupting the programs.

In many cases throughout the study, students "did their own thing."

Mike was interested in,rock music. Consequently, he named his programs

. after rock musicians such as CHICAGO, STEPPENWOLF, ALICE COQOPER, etc.

His delight in.doing so, and the degree to which he was "turned on'" in
general was obvious to numerous observers. Creating unique solutions
to problems, and approaching the problems in a wide variety of ways are

other ways in which students controlled the learning situation.

Some of the students whose motivation and "ability" was question-

- 19 -

O

- ERIC

Aruitoxt provided by Eic:

el

)

_that members of the school staff were surprised but pleased by this.

able in the traditional classroom, left no room for doubt when working
with the computer.. For example, Chris was labelled on the first day
of the st&dy by a school stafftmember as "slow" and unmotivated. How-
ever, from the beginning he was clearly one of the most intense,

motivated, .and perseverant students in the study. It might be added

Also impressive in this study was the determination of the students,
Dave several times asked %f he could continue when the period ended in
ordexr to complete a problem he was very invslved in or take it héme or
stay after school.

In Phase II, the 'major difficulty for students whdicould not solve

¢ ’ E.;-: L"\—mm]aw: ’:'
the third and fourth problems was the inability to terminate a procedure
. N] /

by

after a finite number of iterations. The students in the né-information

group had the most trouble. Procedure termination was covered in the

lessons. However, 'in retrospect it is felt that more emphasis could
‘have been placed on procedure termination.
In Phase III, the use of two inputs was a problem for half of the

!students. Unfortunately, these students were unable to generalize as
Ethgy were able to wfite procedures with one input. 1In sewveral Phase I
1es§bn§; two inputs were used. As in the case with procedure termination,
it was felt that the use of inputs could possibly have been eé%}t with

—
to a greater extent. Also, more programming practice in Phase I might,

have prevented this problem.

Members of the staff at the Qakleaf School expressed their favor,

- 20 - °

ERIC

Aruitoxt provided by Eic:

as a who}e, with respect to this study. In personal communications to
me several of them remarked that besides the obvious academic value,
computer programming was apparently a motivator for "slow" students,
In addition, teachers did not mind students missing regularly scheduled

classes, although they did expect students to make-up the material, and

x’,

were pleased with the enthusiasm for computer programming of the students.
As a whole, the staff at Oaﬂleaf scemed to strongly accept the project
and its implications. The principal stated that "it is my opinion that
the children have learned a great deal more than just LOGO during the

time they have been involved (in the study),"

-

Summary and Implications

The present study was designed to investigate the effects of com-
puter programming on performancelin mathematics, Toward this end, the
LOGO programminé language was taught to fifth grade students at the
Oakleaf School, a suburban elementary school near Pittsburgh. In order
to determine whether or not a conceptual aspect of mathematics could be

learned through computer prografmming, a pretest-posttest design was em-

-ployed. Results indicated that; in fact, a mathematical concept--the

EPRRIR notion of variable in this case--could be learned through com-

puter programming. : ‘ *

In addition, a study of three methods of instruction for teaching program- i

ming was made. The instructional methods--algorithm-given, incomplete-computer-

program, no-information-given--were considered in terms of performance in

- 21 -

ERIC ,

Aruitoxt provided by Eic:

.-

writing programs. It wa$§ found that although instructional method may
fa;ilitate the learning of programming, there were no significant dif-
ferences in the critgrion°situation, Results also indicated that there
was no effect.due tovabilityr-Stanford Achievement Test scores--in the
criterion situation.

An important finding was that elementatry school studeng; could
write cﬁmputer‘programs to generate arithmetic and geometric sequences
and involving variables. Some of the programs were complex and included
the use of logic, recursion, and variables,

Observational results indicated that the students developed certalin
problem-solving behaviors. These included the planning and debugging
of programs, willingness to experiment, and testin of hypotheses.

On the basis of observation, it was also foénd that programming
is an effective learning resource in terms of affective considerations,
In writing programs, the students were highly motivated, perseverant,
and enthusiastic, Statements by the staff at Qakleaf were highly
favorable and supportive ¢f computer programming. The staff‘as well as
o;tside observers and this investigator were impressed with the inten-
sity and high degree of involvement exhibited by the students. Some of
the students whose motivation waé\gggftionable in the traditional class-
room, as indicated by their teac%éts,\were “"turned on" by computer
programming.

The stud;ntSPhad some minor programming difficulties such as using

two or more inputs to a procedure and terminating a procedure after a

finite number of iterations. Nevertheless, they demonstrated considerable

- 22 -

~y

ERIC

Aruitoxt provided by Eic:

.

T(1957) in the process of problem-solv1ng The queStion'of whether or .

skill in defining and executing procedures, .using variables, and incre-

menting values. It is felt that greater +emphasis should be placed on

the identification of problems made by students in the course of pro- .

gramming'as well as ‘the definition of suitable tasks and the %reparatién
for them in subsequent studies, -t

The educational and psychological implications of the study were
numerous . It was evident that)the students were-agtively inVolved in . .
their learning, initiating and writiﬁg ﬁrograms, méking discoveries,

and employing heuristic guidelines such as those advocated by Polya) :

«, »

not these behaviors would emerge duéto other modes of 1nst1uct10n w1th~’ .

varying degrees of structure ié%an interesting one.ﬁﬁConsider a con- ‘ *
“ v
tinuum of instruction in terms of amount of 1nhe%ent structure. At one ' A g

- N ¥ -

end, highly structured, programmed instruction wou&d lie. It is question- _ . . :

- ™
-

able whether or not the behaviors mentioned would be acquired in this ‘

case. This same question also holds for highly structured, author- ?-Z?‘

controlled computer-assisted instruction. 1In the middle of the continuum'

lies the instructional nature of the present study. More research will ° -

- . . N .

be needed to further validate the -acquisition of these behaviors. At , .)

»

the other end are unstructured situations such as those in which students -

define and solve their own problems. Recent experience using the
’ i

!
unstructured approach in a computer club, as well as observations of the
approach elsewhere, lead this investigator to question its efficacy at

least in terms of student initiative to write programs. It remains to

- 23 - : :

i

be seen whether or not initiative as well as the other behaviors develop

.

in the unstructured situation.
A definitive statement regarding the transfer of the acquired
| ' knowledge is beyond the scope of this study. However; it was obvious -

that the students were generalizing in the criterion phase (Phase III) based

.- o & »
4 on their training in the prior two phases. In addition, they demon-

o

strated their ability to generalize their knowledge of"variable on an

e
Y . independent measure. Gagne (1970) states that transfer is facilitated

by "instructional conditions that will stretch students' minds, en-

3

courage the generalization of knowledge, and challenge students to solve

s ° problems in novel situations.'" It can only be speculated that the ctranafer
- - will be facilitated in the future by the instructional conditions of
the present study. . -

Before computer programming is introduced in the classroom, it
will be necessary to define its c}:ion in terms of what is” to be studied

. ~ through programming, and how programming relates to existing curricula.

The nature of material to be studied will be largely due to the

imagindtion of curriculum developers. Vast possibilities exist for .

using programming from mathematics to music. The integration of several

LY

_subject areas is also conceivable. T : 1
. The relationship of [vogramming to existing curricula is a more 1
subtle issue, Should programming be an integral part of an existing |
curriculum such’as Individually Prescribed Instruction, or should it be

an entity by itself? If the former is the case, programming might be

used as an adjunct to existing learning packages. If the latter is con-

e - 2% -

Aruitoxt provided by Eic:

ERIC : | | ‘ | B =

<
&

- sidered, programming might serve as a basis for instruction in areas

not covered in ex1st1ng currlcula. The 1mp11cat10ns of the present

research seem to favor a comblnatlon of the two. -~

14

In addition to. déflnlng the functlon of programming in the class- ' 1
room, it will be important to determlne the role of the teacher. 1In
doing so, the degree of involvement of the teacher needs to be considered.
This in turn will assist in determining the amount of training in pro-

gramming that the teachers will need.

Both the function of programming and the rolg of the teacher will
be due, in part, to the degree of self-containment of the materigl
associated with programming. For example, the self-contained lessons
were used in this study to -assist students in 1earning elemeﬁts of the ’ Ct
programming language. Although alternative approaches to -teaching
elements of a 1anguage‘are available, the lessons seemed t; facilitéée

individualization in terms of the inherent nature of the material and

*

teacher assistance particqlarly when working witﬁ groups larger than ' -

four. ‘ ‘ . ' -)
Finally, computer programming proved;to be Qn exciting way of

learning mathematics %or the students in this study, That they did

leamn about mgthematics was evident. That programming can be a valu-

—

able tocl in mathematics instruction is also evident.

Iy

References

Dwyer, T. A, Some Principles for the Human Use of Computers in Education.
Int° J. Man-M@chine Studies, 1971, 3, 219-239.

Dwyer *T. A, Teacher/Student Authored CcAI Using the NEWBASIC System.,
Communications.of the ACM, 1972, 15, 1, 21-28.

Feurzeig, W., Papert, S., Bloom, M., Grant, R., Solomon, S., Programming-
Languages as a Conceptual Framework for Teaching Mathematics. Pro-
ject Report No. 1889, Bolt Beranek and Newman, -Cambridge, Mass,, 1969.

Feurzeig, W. and Lukas, G. Information Processing Models and Computer
Aids for Human' Performance., Reéport No. 2187, Bolt Beranek and
Newman, Cambridge, Mass., 1971.

Feurzeig, W., Lukas, G., Fafllck P., Gré\E\-Ro, Lukas, Jos Morgan, C.,
Weiner, W.., Wexelblat, P,, Programming- Languages as a Conceptual
Framework for Teaching Mathematics. Vol. 1-%, Report No, 2165,
Bolt Beranek and Newman, Cambridge, Mass., 1971

B

Gagne, R. The Conoltlons of Learning; 2nd edition., N.Y.: ﬁolt, Rinehart,
and Winston, Inc,, 1970.: T

L

h

Guenther, W. Analysis of Variance. New Jersey: Prentice-Hall, Inc.,
1964, -

K-13 Arithmetic-Algebra Committee, K-13 Mathematics: Some Non-Geometric
Aspects. Part II: Computing,.Logic, and Problem -Solving, Curric-
ulum Series #11 OISE, 1971,

Hatfield, L. and Kieren, T. Computer-Assisted Problem Solving in School
Mathematics: J. Research in Mathematics Education, 1972, 3 (2),
99-112, v

TR

Milner, S. The Effects of Teaching Computer Programming on Performance
in Mathematics., Unpublished doctoral dis'sertation, University of
Pittsbuxgh, 1972. : ‘ I

Papert, S,-A Cqmgptef Laboratory for Elemenéé%y Schools., M.I.T. Arti-
ficial Intelligence Laboratory, LOGO Memd No. 1, 1971a,

Papert, S. Teaching Children Thinking. M.I. T., A.I, Lab. LOGO Memo
No., 2, 1971b, .- - -

Paﬁert, S. Teaching Children to be Mathematicians vs. TeéchingﬁAbout
Mathematics. M.I.T., A,I. Lab. LOGO Memo No. 4, 1971c.

-2 - .

Papert, S. and Solomon, C. Twenty Things to do with a Computer., M.I.T.

A.I. Bab. LOGO Memo No. 3, 1971. ’

*.Polya, G. How to Solve It.(Second Edition) Princeton University Press,
Princeton, New Jersey, 1957,

o

- 27 -

APPENDIX A

~

Appendix A: Programming Tasks

Phase II Tasks by Instructional Method .

Phase III Tasks . . .

* e o e e LIS * .

g —

Page

~

(Algorithm Given)

"Write a LOGO procedure which makes the computer count by 2, " Make
the procedure begin with any number, then add 2 to that number, and so
oé. Mgke the computer print the numbers.

Here is an example ofrhow the iOGO procedure should work after you

have told the computer how to do it:) .

e O N W W

W

-, Below is a list of instructions for doing this procedure. You

need to make these instructions into LOGO commands so that the computer
will understand how to count by 2, . «

1) Tell the computer.thé name of the number that is to be input
to the procedure. The name can stand for any number to start
with.

2) Make the computer print whatever that number is (the one that
is input to the procedure). Remember, there is a name that
stands for that number.

- 3) Add 2 to the number that is input. In other words, make the
number stand for 2 more than it was when it was input to the
>procedure,

4) Do the procedure over again. This time the number that is
input will be increased by 2 over the last time. (Remember,
a procedure can.be done over again by telling the computer the
name of the input to that procedure.)

- 29 -

(Incomplete Program)

P+

i Write a LOGO procedure which counts by 6 and 'stops at 50. 1In
other words, make the procedure begin with any number (this might be
input to the procedure), add 6 to that number, and so on, until the
number is greater than SO: Make the computer print these numbers. No

_ number greater than 50 should be printed. .
Here is an example of how. the LOGO procedure should work after you
have told the computer how to do it. The starting number here is 1.
1 .
7 . .
13 RER
19 . .
25

31
37
43
49

Below is part of a LOGO prucedure for counting by 6 up to 50. Fill
in the blanks, and type the LOGO procedure into the computer. Then try

it to see if you are correct.

TO COUNTSIX /B/

10 TEST) . OF . . AND 50
20 IF . STOP
30 IF ' PRINT /B/~
40 MAKE '
NAME: "B

THING: SUM OF /B/ AND

50 /B/

END

- 30 -

(No information)

Write a LOGO\pkocedure which makes ‘the computer count by multi-
pfying by é. Make the procedure bégin with any number to start with,
multiply it by 2, and so on. Make the computer print fhe numbers.

Here is an exémple of how thp LOGO procedure should work after you

have told the computer how to do it:

- 31 =~

¢
L4 *

Write a LOGO procedure which makes the computer count by any number
that you input and stops at any n?mber that you input. You can do this
Hy using thrée inputs to the procédure. The first input might be the
nuéber that the procedure begins with. The second input might be the

number the procedure counts by. The third input might be the number

that the procedure stops at.

In other words, make the procedure begin with any number (the first

.

input), then add the number that the procedure counts by (the second |
input) to that number, and so.on. No numbers greater than the thirxd
input should be printed.

Here is an example of how the procedure should work if the first

*

input &ghe starting number) is 1, the second input (the number the
proceduré counts by) is 3, and the third input (the stopping number) is
207

1

A

7

10

13 -
16 :

19

Here is another example with the first input 12, the second input

8, and the third input 44:

12
20
28
36
44

~ 32 -~

Write a LOGO\proceQQEg,which makes the computer count by subtracting

R

by any number that y;;\igsét. You can do this by using two inputs. The ~
first input might be the ﬁdﬁﬁgr you start with (it can be any number to

begin), and the second input might be the number you subtract by. Make

the compiter print these numbers.

Here is an example of hdw the LOGO procedure should look after you

have told the computer how to do it. 1If the first input (the number

the procedure begins with) is 50, and the second input is 12 (the numbet
the procedure subtracts by), the procedure should look like this:

50
38
26
14 i
2
~-10

Here is another example. If the first input is 100, and the second

' input is 5, the procedure should look like this:

100

95

90 »
85

80 k]

75 :

- 33 -

. . /‘/’
e pae - : T
- A ’/'//,
- ———/’-'/_//
APPENDIX B
Appendix B: Examples of Variable Test Items
, Page
TEGMS « v o o ¢ o ¢ o o o o o o o s s 0 o o o o s e s o0 3 35
/ .
f
" " Va4]
.

i) Yhe name ABC can stanc for any cda muler, Wnlch
of the follewing can tne name ARG svand for?
a) 3 H dEngrre
b) 3 or 5 o
C) Neither 3 or 5 {;l _")"‘L‘!:‘SS e e —— —_—
a) & :
8) R,
— W—11 19 4Pinag]
S— 3) \'7
Z— 2.
POINTS
(W+S) + (Z2+48) = ?Og (2
r’-‘e}
9) . What’ numbers other than 21 and 3 can you put in

the BOX and TRIANGLIE so that they are names for 21
and 3?7 (Fill in the blanks)

I+ D=2 s D__, ,
MALMECES THOULD HOT BL &\ QWD E
TRELL) VI VRLEATL Gun VG A |
(",!\}:, AT S Q.'P\f A N
¢ acs R, BA &£7.0,
- - ; GOt Yo, Cotie SR
17) If N can stand for any even number, what number
" can go into the BOX ? (Fill in the blank.)

N—+(D+ 11)

t

18) G— 14 NGSER oRn BE §R
BR—G BOY OR. GPGCE.
©3BR=____ 12 4v'om'r§ ‘
T 2 Poinve
21) Usc the. following information for this question:
VAL — 3 P—+7 -
Nl —9 A—» VAL
“Z—» 10 Q—r12
AeQ = kAN 4t T P Vo o EaT
Z + VAL + A = _be b Touy
3+ P = 1% & Tent y DO ¥ TORT
1)—0 A = ‘;:’J..? l?‘ “‘;‘A Q ‘.’Q % '{"f:_ fl'&ﬁf‘f{; N
2l ,
N—13 & POINTS
RS— N \;i
Q N=RS= \ TN
ERIC *Rs}g

()~

HBAN oDD Mo, 4 POYNTS

Table 1

Mean Error-Free Programs‘ﬁor Phase II

/ i T Instructional Method
Algorithm Incomplete No information
Given Program -
High | 3.33 . 4.0 2.66 3.33
Ability
Low 2.33 3.0 - " 1.66 2,33
2,833 3.50 2.167 2,833
/ -
_ y ,
- 36 -

Table.Z
Phase III Analysis of Variance Results
Source df ss S F P LESS THAN

Ability 1 12.5 12.5 1.73 .213
Method 2 27.45 13.72 2,65 274
Ability X Method 2 10.33 5.17 TS .509
Within 12 86.67 7.22

TOTAL 136.94

17

[}

+, Table 3
Mean Error-Free Programs in Phas~ III
Instructional Method
- Algorithm Incomplete .
Given Program No Information
7 High 1.67 5.33 4.66 3.89
Ability .
= Low 1.67 4.0 1.0 2,22
IR 1.67 4,67 2.83 3.05 J s
34
7 !
I e L ' '~
- . & ‘ . ,) '
2 . N
o
* e " i
" .
J ._
> T t ¢ ‘
" - 38 - ‘ - y
. .) e e e

Y

haa L4

Table &4

Analysis of Covariance Results)
on Concept Acquisition -

Source df ss M F P LESS THAN o -
|Between 1- 1726,14 1726.14 7.433 01
Within 35 8128,37 232.24 ,
Total 36 . 9854,.51 o)
|
- , ‘
' |
\ |
.

-39 - -

%

"“Pretest

Posttest

Variable Test Means and Standard Déviations

Table 5

Computer Group-

Non-Computer Group

N = 18 N = 20

Mean 342 33.859
5.D. 23.03 21.54
Me an 49,10 36.10
“Is.p. 26.27 26,01

- 40 -

